日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

Solar

Wednesday
19 Apr 2023

Using Machine Learning to Find Reliable and Low-Cost Solar Cells

19 Apr 2023  by techxplore   

Researchers at the University of California, Davis College of Engineering are using machine learning to identify new materials for high-efficiency solar cells. Using high-throughput experiments and machine learning-based algorithms, they have found it is possible to forecast the materials' dynamic behavior with very high accuracy, without the need to perform as many experiments.

The work is featured on the cover of the April issue of ACS Energy Letters.

Hybrid perovskites are organic-inorganic molecules that have received a lot of attention over the past 10 years for their potential use in renewable energy, said Marina Leite, associate professor of materials science and engineering at UC Davis and senior author on the paper. Some are comparable in efficiency to silicon for making solar cells, but they are cheaper to make and lighter, potentially allowing a wide range of applications, including light-emitting devices.

A primary challenge in the field is that the perovskite devices tend to degrade way more readily than silicon when exposed to moisture, oxygen, light, heat, and voltage. The problem is to find which perovskites combine high-efficiency performance with resilience to environmental conditions.

Perovskites have a general structure of ABX3, where A is an organic (carbon-based) or inorganic group, B is lead or tin, and X is a halide (based on chlorine, iodine or fluorine or a combination). Therefore, "the number of possible chemical combinations alone is enormous", Leite said. Further, they need to be assessed against multiple environmental conditions, alone and in combination, which results in a hyperparameter space that cannot be explored using conventional trial-and-error methods.

"The chemical parameter space is enormous," Leite said. "To test them all would be very time consuming and tedious."

High throughput experiments and machine learning

As a first and key step towards solving thesechallenges, Leite and graduate students Meghna Srivastava and Abigail Hering decide to test whether machine learning algorithms could be effective when testing and predicting the effects of moisture on material degradation.

Srivastava and Hering built an automated, high-throughput system to measure the photoluminescence efficiency of five different perovskite films against the conditions of summer days in Sacramento. They were able to collect over 7,000 measurements in a week, accumulating enough data for a reliable training set.

They used this data to train three different machine learning algorithms: a linear regression model, a neural network and a statistical model called SARIMAX. They compared the predictions of the models to physical results measured in the lab. The SARIMAX model showed best performance with a 90 percent match to observed results during a window of 50-plus hours.

"These results demonstrate that we can make use of machine learning in identifying candidate materials and suitable conditions to prevent degradation in perovskites," Leite said. Next steps will be to expand the experiments to quantify combinations of multiple environmental factors.

The perovskite film itself is only a part of a complete photovoltaic cell, Leite said. The same machine learning approach could also be used to forecast the behavior of a complete device.

"Our paradigm is unique, and I am eager to see the upcoming measurements. Moreover, I am very proud of the students' diligence during the pandemic" Leite said.

Additional authors on the paper are Yu An and Juan-Pablo Correa-Baena, both from Georgia Tech.


More News

Loading……
蜜桃视频在线免费| 天天射狠狠干| 欧美日韩中文字幕精品| 欧美日韩小视频| 日韩欧美在线网站| 免费看av大片| 高h视频在线| 成人在线网址| 久久野战av| **爰片久久毛片| 国产精品99久久| 亚洲私拍自拍| 国产在线一区观看| 中文字幕乱码一区二区免费| 亚洲电影一区二区| 欧美一区二区三区色| 最近2018中文字幕免费在线视频| 九九在线视频| 欧美大胆性生话| 久久综合五月婷婷| 亚洲一级高清| 国产亚洲一二三区| 色婷婷久久综合| 看黄的a网站| 青草在线视频| 国产精品巨作av| 韩国久久久久| 91丨九色丨蝌蚪富婆spa| 亚洲高清一区二区三区| 日韩欧美一二三区| 97最新国自产拍视频在线完整在线看| 18在线观看的| 香蕉大人久久国产成人av| 天天影视综合| 国产一区二区三区久久悠悠色av| 中文字幕欧美区| 日韩视频中午一区| 成人18在线| 日韩黄色三级在线观看| 国产精品88久久久久久| 成人av在线看| 欧美日本一道本| 奇米影视888狠狠狠777不卡| 2019年精品视频自拍| 911精品美国片911久久久| 精品亚洲国产成人av制服丝袜| 国产精品久久久久天堂| 欧美成人vps| www555久久| 色综合咪咪久久网| 99久久99久久精品国产片果冻| 欧美影院精品一区| av大片在线看| 亚洲电影男人天堂| 国产91精品一区二区| 欧美性大战久久久| 成人在线观看亚洲| 成人免费电影网址| av男人天堂一区| 7777精品伊人久久久大香线蕉 | 91视频精品在这里| 91精品国产综合久久精品图片 | 日韩电影免费一区| 午夜精品久久久久久久| 精品视频三区| 婷婷成人综合| bt7086福利一区国产| 日韩欧美国产精品| 中老年在线免费视频| 亚洲特级毛片| 一区二区三区成人在线视频| 超碰在线免费看| 91国内精品| 成人黄色777网| 97高清视频| 亚洲欧美日本国产| av一区二区不卡| 丰满少妇又爽又紧又丰满69| 视频91a欧美| 极品美女销魂一区二区三区| 欧美视频在线一区二区三区| 黑人精品视频| 日韩主播视频在线| 欧美日韩电影在线| 欧美片第一页| 免费观看成人鲁鲁鲁鲁鲁视频| 欧美亚洲尤物久久| 97成人资源| 久久精品国产久精国产| 欧美一区二区日韩一区二区| 欧美激情不卡| www.在线成人| 性色视频在线观看| 91偷拍一区二区三区精品| 一区二区三区四区激情| 成人午夜在线影视| 久久综合九色| 性色88av老女人视频| а√中文在线天堂精品| 欧美激情一二三区| 成年午夜在线| 性久久久久久| 日韩午夜激情电影| 国产精品久av福利在线观看| 中文av字幕一区| 麻豆影视在线观看_| 久久三级福利| 3d黄动漫网站| 91综合久久| 欧亚一区二区三区| 精品一区二区三区中文字幕| 久久久一区二区三区捆绑**| 97超碰人人在线| 午夜在线一区二区| 欧美mv和日韩mv国产网站| 国产精品极品| 亚洲成人激情av| 深夜视频一区二区| 国产无人区一区二区三区| 免费人成在线观看播放视频| 秋霞影院一区二区| 最新av电影| 最新国产拍偷乱拍精品 | 波多野结衣在线一区| 国产亚洲依依| 裸体一区二区三区| 激情小视频在线观看| 天堂一区二区在线| 中文字幕在线影视资源| 亚洲免费影视| 中文字幕在线影院| 蜜臀av性久久久久蜜臀aⅴ流畅| 免费亚色电影在线观看| 国产精品激情电影| 国产h色视频在线观看| 午夜精品视频一区二区三区在线看| 91精品国产欧美一区二区成人| 欧美日一区二区| 日韩一区二区影院| 91av精品| 日本视频一二三区中文字幕| 激情久久久久久久| 中文字幕伊人| 精品无人码麻豆乱码1区2区| 国产精品秘入口| 成人美女在线观看| 人在线成免费视频| |精品福利一区二区三区| 日韩不卡在线| 欧美色视频日本高清在线观看| 超碰97久久国产精品牛牛| 91高清视频在线| 精品国产91乱码一区二区三区四区| 欧美一区二区在线视频| 国产精品www.| 欧洲成人av| 91一区一区三区| 欧美精品高清| 欧美色视频日本版| 91视频精品| 亚洲欧洲闷骚av少妇影院| 国产一区二区三区香蕉| 欧美xxxx少妇| 亚洲综合一区在线| 综合亚洲自拍| 好男人看片在线观看免费观看国语| 日韩极品在线观看| 八戒八戒神马在线电影| 国产精品成人一区二区三区夜夜夜 | 亚洲成人av电影在线| 欧美久久综合网| 在线观看免费毛片| 99这里只有精品| 国产精品成人**免费视频| 欧美二区乱c少妇| 久久久999| 成人爽a毛片免费啪啪动漫| 一区二区高清在线| 91亚洲国产成人久久精品| 涩涩视频在线观看免费| 久久久国产一区二区三区四区小说| 四虎精品一区二区免费| 日韩视频在线观看一区二区| 奇米精品一区二区三区在线观看| cao在线视频| 欧洲人成人精品| 丝袜美腿成人在线| 黄色激情在线播放| 67194成人在线观看| 久久se这里有精品| 亚洲男男av| 黄色国产网站在线观看| 不卡影院免费观看| 琪琪久久久久日韩精品| 亚洲伦理在线| 悠悠色在线精品| 亚洲激情二区| 国产经典一区| 另类图片激情| 亚洲欧洲av在线|