日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

Hydrogen

Tuesday
26 Nov 2024

Breakthrough in Hydrogen Detection System Unveiled

26 Nov 2024   

Hydrogen gas is a promising energy source with several advantages - it is lightweight, storable, energy-dense, and environmentally friendly compared to fossil fuels, producing no pollutants or greenhouse gas emissions. As such, it has extensive applications across different fields, including transportation, architecture, power generation, and industries. However, hydrogen is highly flammable, and therefore its safe and widespread use requires reliable methods for detecting leaks and ensuring its purity. The need for reliable detection methods has necessitated the development of trace-gas sensing techniques. While several methods have been developed for hydrogen sensing, none offer optimal performance.

One promising method is tunable diode laser absorption spectroscopy (TDLAS) technology, which has gained significant attention for detecting various gases. TDLAS offers several key advantages, including non-contact measurement, in situ detection, high selectivity, rapid response, low cost, and multi-component, multi-parameter measurement capabilities. It works on the principle that gases absorb light at a specific wavelength, resulting in a dark line in the absorption spectrum, known as the absorption line. By measuring the amount of laser light that has been absorbed at this wavelength, the concentration of the gas can be determined. However, detecting low concentrations of hydrogen with TDLAS is difficult because hydrogen has weaker absorption in the infrared region compared to other gases.

To address this issue, a research team from Japan led by Associate Professor Tatsuo Shiina from the Graduate School of Engineering, Chiba University, developed an innovative method for precise hydrogen gas measurement using TDLAS. The team comprised Alifu Xiafukaiti and Nofel Lagrosas from the Graduate School of Engineering, Chiba University, Ippei Asahi from the Shikoku Research Institute Inc., and Shigeru Yamaguchi from the School of Science, Tokai University. Their study was made available online on August 13, 2024, and published in Volume 180 of the journal Optics and Laser Technology on January 01, 2025.

"In this study, we achieved highly sensitive detection of hydrogen gas through meticulous control of pressure and modulation parameters in the TDLAS setup. Additionally, we introduced a calibration-free technique that ensures the adaptability to a wide range of concentrations," explains Prof. Shiina.

In TDLAS, laser light is passed through a pressurized gas cell called a Herriott multipass cell (HMPC) containing the target gas. The laser's wavelength is modulated or oscillated around the target absorption line of the gas at a specific frequency to remove any environmental noise. The pressure in HMPC can significantly influence the absorption line width and consequently the modulation parameters under TDLAS.

The researchers carefully analyzed the width of hydrogen's strongest absorption line at different pressures. Through simulations, the researchers identified the optimal pressure for a broader absorption line width and the most effective modulation parameters within this line width. Their calibration-free technique involved using the first harmonic of the modulated absorption signal to normalize the second harmonic through their ratio, instead of just relying on the second harmonic signal as in conventional TDLAS systems. Additionally, they employed a high-pressure gas cell containing pure hydrogen as a reference to fine-tune the modulating parameters of the laser signal.

Through this innovative approach, the researchers achieved accurate measurements of hydrogen concentrations in a wide detection range from 0.01% to 100%, where 0.01% equals a concentration of just 100 parts per million (ppm). Moreover, the results improved with longer integration times (the time period during which light is allowed to be absorbed). At 0.1 second integration time, the minimum detection limit was 0.3% or 30,000 ppm, which improved to 0.0055% or 55 ppm at 30 seconds integration time. However, beyond 30 seconds the minimum detection limit increased.

"Our system can significantly improve hydrogen detection systems for safety and quality control, facilitating wider adoption of hydrogen fuel. For example, this system can be reliably used for the detection of leakages in hydrogen fuel cell cars," remarks Prof. Shiina about the potential applications of the study.

To summarize, this pioneering technique could help pave the way for a sustainable future and boost the implementation of hydrogen as an eco-friendly fuel.

More News

Loading……
综合天堂久久久久久久| 欧美freesex8一10精品| 性爽视频在线| 亚洲欧洲日本韩国| 日本精品另类| 日韩综合一区二区三区| 99国产精品免费网站| 日韩三级视频| 亚洲网色网站| 日日夜夜免费精品| 国产成人免费视频| 国产欧美一区二区精品忘忧草| 国产精品传媒视频| 福利微拍一区二区| 日韩免费电影一区| 色网址在线观看| 香蕉视频在线播放| 中文字幕色婷婷在线视频| 国产专区精品| 亚洲国产精品久久久天堂| 午夜一区在线| 91片黄在线观看| 欧美日韩人人澡狠狠躁视频| 精品日韩欧美一区二区| 日本在线丨区| 亚洲三级欧美| 一区三区在线欧| 亚洲女优在线| 国产亚洲综合在线| 欧美性猛交xxxx乱大交退制版 | 国产精品久久久久久久第一福利| 亚洲高清视频在线| 精品免费日韩av| 成人动漫在线免费观看| 91国内外精品自在线播放| 国模吧精品视频| 日韩制服丝袜av| 国产精品久久福利| 欧美日本一道本在线视频| 中文字幕在线视频免费观看| av毛片午夜不卡高**水| 九色丨蝌蚪丨成人| 老司机精品久久| 亚洲欧洲av一区二区三区久久| 7777精品伊人久久久大香线蕉的 | 99久久免费精品高清特色大片| 亚洲高清视频的网址| 妞干网在线观看| 秋霞在线午夜| 成人女性视频| 成人高清在线视频| 欧美日韩高清在线| 欧美尤物美女在线| 欧美大片网址| 国产麻豆欧美日韩一区| 日韩欧美中文字幕在线观看| 中文资源在线网| 国产精品久久久久久久久久辛辛| 亚洲精品偷拍| 亚洲影视在线观看| 一不卡在线视频| 国产亚洲精aa在线看| 肉色丝袜一区二区| 欧美体内谢she精2性欧美| 日韩电影在线观看完整版| 九九99久久精品在免费线bt| 日本中文字幕一区| 五月激情丁香一区二区三区| 色av男人的天堂免费在线| 成人噜噜噜噜| 国内精品写真在线观看| 欧美色图在线视频| gogogogo高清视频在线| 成人羞羞视频在线看网址| 91热门视频在线观看| 色成人亚洲网| 久久伊人精品| 丁香婷婷综合色啪| 找av导航入口| 国产人与zoxxxx另类91| 久久99最新地址| 欧美精品在线观看一区二区| 一区二区电影免费观看| 亚洲福利专区| 欧美日韩国产专区| 日本理论片午伦夜理片在线观看| 欧美va天堂在线| 午夜影院久久久| 色婷婷在线播放| 亚洲精品专区| 欧美日韩精品一区二区天天拍小说| av电影免费在线看| 首页亚洲欧美制服丝腿| 欧美日韩一区二区三区视频| 欧美日韩大片| 韩国欧美国产1区| 亚洲四虎av| 国产精品自在| 国产精品国产三级国产a| 国产午夜在线视频| 狠狠干综合网| 欧美日韩性生活| 99热这里有精品| av激情综合网| 国产在线视频资源| 亚洲第一网站| 日韩欧美一二区| 国内露脸中年夫妇交换精品| 国产精品盗摄一区二区三区| 你懂的免费在线观看| 天天做天天爱天天综合网| 亚洲成av人**亚洲成av**| 老司机深夜福利在线观看| 激情欧美日韩一区二区| 最大av网站| 亚洲欧洲中文字幕| 7799精品视频| 免费视频国产一区| 色综合久久中文综合久久97| 精品乱码一区二区三区四区| 99久精品国产| 男人影院在线观看| 蜜桃久久av一区| 久草在线资源视频在线观看| 欧美在线二区| 能看av的网址| 国产精品福利在线观看播放| 欧美日韩在线直播| 欧美一区二区三区红桃小说| 亚洲一区二区三区中文字幕| 成人爱爱网址| 国产精品色哟哟网站| 91福利在线尤物| 久久一区二区三区四区| 污视频在线免费观看网站| 国产999精品久久| 老司机在线永久免费观看| 国产精品一卡二| 高清毛片在线看| 国产精品自拍网站| 天堂中文8资源在线8| 国产精品亚洲第一区在线暖暖韩国| 天堂在线中文字幕| 蜜臀精品一区二区三区在线观看| 中日韩免费毛片| 久久99精品国产麻豆婷婷| 黄色av网站在线| 国产成人在线视频网址| 国产在线激情| 久久久久99精品国产片| 综合久久2023| 一区二区三区在线影院| 亚洲欧美专区| 精品久久久精品| 午夜精品影视国产一区在线麻豆| 欧美日韩一区二区电影| 亚洲成av人片乱码色午夜| 被下部羞羞漫画| 鲁大师影院一区二区三区| 久草福利在线视频| 波多野结衣视频一区| 忘忧草在线影院两性视频| 亚洲欧美色图小说| 欧美三级自拍| 激情亚洲综合网| 秋霞国产午夜精品免费视频| 日韩精品毛片| 国产精品福利av| 国产精品白丝一区二区三区| 欧美日本在线一区| 99视频在线精品国自产拍免费观看| 午夜影院在线观看视频| 国产一区二区三区高清播放| www.超碰在线| 午夜电影久久久| 999久久久91| 神马亚洲视频| 久久精品视频一区二区三区| 99精品美女视频在线观看热舞| 欧美日韩精品二区第二页| 亚洲大黄网站| 99热国产在线中文| 亚洲一区影音先锋| 亚洲精品极品少妇16p| 国产最新视频在线观看| 日本一区二区成人在线| 亚洲福利天堂| 日韩黄色影片| 亚洲精品免费在线| 亚洲不卡av不卡一区二区| 香蕉视频免费在线播放| 亚洲精品成人少妇| 99tv成人| 毛片在线看网站| 午夜精品久久久久久不卡8050| 欧美精品大片| 2020av在线| 777久久久精品| 成人免费高清视频| 群体交乱之放荡娇妻一区二区|