日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

Energy Efficiency

Monday
20 Jan 2020

A Smart Way to Predict Building Energy Consumption

20 Jan 2020  by EDGY   

Researchers predicted the energy consumption of buildings using hybrid deep algorithms, computational experiments, and parallel computing.

A team of international researchers has developed a smarter way to predict energy consumption in buildings.

Researchers have always found it challenging to predict how buildings use energy precisely. And that’s because several environmental factors like outdoor temperature, humidity, day of the week, and special events influence how we use energy.

While these environmental parameters may help predict energy consumption, their use is somewhat limited. For example, two identical buildings may exist in a similar setting, and their energy consumption could vary based on how the occupants use the premises.

Even under the same temperature, one building’s HVAC system will eventually use more energy if it hosts an event.

An assistant professor in the Department of Electrical Engineering at the University of Hail‘s Engineering College in Saudi Arabia, Abdulaziz Almalaq explained:

“Prediction using a large number of a building’s operational parameters, such as room temperature, major appliances and heating, ventilation, and air-conditioning (HVAC) system parameters, is quite a complicated problem, compared with prediction using only historical data.”

Almalaq and other researchers from the United States and China soon devised a solution.

Using Hybrid Deep Learning to Predict Energy Consumption

The researchers developed a smarter way to predict energy use through hybrid deep learning algorithms.

The method also involves artificial systems, computational experiments, and parallel computing based on complex, but generic systems. In a test that included real buildings, the team noted that their method improved energy management significantly.

Author of the study, Almalaq noted:

“The analysis performed in this paper showed that the hybrid deep learning model is a powerful artificial intelligence tool for modeling multivariable complex systems.”

Smart buildings are becoming popular today. So, an accurate prediction of external and internal conditions is necessary to improve energy efficiency and management.

The team pointed out that their method has the potential to be applied in various areas. These include smart homes, smart offices, and smart cities.

They published their findings in the IEEE/CAA Journal of Automatica Sinica.

More News

Loading……
2019天天操夜夜操| 色综合天天综合给合国产| 中文字幕第一区二区| 国产精品日韩精品欧美在线| 国产精品久久久久久久久搜平片 | 91精品午夜视频| 精品国产麻豆免费人成网站| 在线看片黄色| 超碰免费在线观看| 成人免费图片免费观看| 精品一区二区三区四区五区| 最新国产一区| 国产一区二区你懂的| 国产一区视频在线看| 国产精品日日摸夜夜摸av| 色域天天综合网| 成人手机在线电影| 国产色在线 com| 欧美日韩国产v| 婷婷亚洲精品| 久久亚洲不卡| 久久日韩精品一区二区五区| 婷婷综合五月天| 三级黄色的网站| av中文字幕在线| 久久久人成影片一区二区三区在哪下载| 欧美视频二区欧美影视| 欧美一区在线看| 韩国毛片一区二区三区| 亚洲欧美韩国综合色| 91精品国产乱码| 黄色的视频在线免费观看| 日韩欧美一区二区三区在线观看| 精品国产91| 久久99精品国产.久久久久久| 中文字幕一区二区三区在线观看| 欧美疯狂做受xxxx富婆| 国产小视频免费在线网址| jizz亚洲女人高潮大叫| 外国成人免费视频| 成人性生交大片免费看视频在线| 精品国产精品三级精品av网址| 91国内精品在线视频| 第一中文字幕在线| 欧美人与拘性视交免费看| 美女国产一区二区三区| 一区二区三区四区在线| 黄网站免费观看| 女生影院久久| 欧美日韩网址| 国产精品欧美一级免费| 在线观看成人影院| 久久男人天堂| 国产精品v日韩精品v欧美精品网站| 99re这里都是精品| 日韩一区二区三| 国产福利在线免费观看| 日韩精品午夜| 久久久久国产精品厨房| 日韩一区和二区| 超碰资源在线| 国产精品国产三级国产在线观看| 99re成人精品视频| 日韩手机在线导航| 国产污视频在线播放| 国产一区清纯| 亚洲综合网站在线观看| 亚洲美女电影在线| 国产精品45p| 国产91色综合久久免费分享| 欧美高清你懂得| 国产精品一区二区日韩| 欧美成人有码| 亚洲一区二区三区视频在线播放| 飘雪影视在线观看免费观看| 牛牛精品成人免费视频| 不卡av电影在线播放| 欧美成人video| 久久女人天堂| 激情久久五月天| 日韩免费性生活视频播放| se01亚洲视频| 麻豆91在线播放免费| 日韩一区二区免费在线电影| 国产精品av一区二区三区 | 亚洲欧美区自拍先锋| 国产三级av在线| 国产一区二区欧美| 97精品久久久午夜一区二区三区| 狠狠色一日本高清视频| 九色丨蝌蚪丨成人| 久久精品视频在线看| 蜜臀在线观看| 成人看的羞羞网站| 亚洲啪啪综合av一区二区三区| 国产二区视频在线观看| 欧美日韩影院| 欧美性xxxxx| 蜜桃精品在线| 91在线看国产| 头脑特工队2免费完整版在线观看| av伊人久久| 亚洲美女91| 欧美日中文字幕| 亚洲女同女同女同女同女同69| 欧美va亚洲va在线观看蝴蝶网| www.8ⅹ8ⅹ羞羞漫画在线看| 神马久久资源| 成人免费视频网站在线观看| 欧美日韩不卡在线| 国产丝袜视频在线播放| 成人午夜av影视| 成人高潮aa毛片免费| 亚洲校园激情春色| 91色.com| 亚洲不卡系列| 91女厕偷拍女厕偷拍高清| 亚洲嫩模一区| 欧美高清一区| 在线不卡一区二区| 精品国产乱子伦一区二区| 中文一区在线播放| 草莓福利社区在线| 国产精品69久久久久水密桃 | 黄色av网址在线免费观看| 亚洲精一区二区三区| 国产主播色在线| 午夜精品久久| 欧美hdsex| 欧美1区3d| metart日本精品嫩模| 国产精品hd| 日本中文视频| 国产一区二区精品| 黄页网址大全在线观看| 伊人久久大香线蕉综合热线 | 成人av二区| 91精品国产黑色紧身裤美女| 欧美gayvideo| 狠狠色狠狠色综合网| 好看不卡的中文字幕| 成视频免费在线看| 久久成人免费| 嫩草研究院在线观看| 国产一区二区中文字幕| 天堂аⅴ在线地址8| www.在线欧美| 中文在线аv在线| 一区二区三区影院| 粉嫩av一区二区| 欧美性大战久久| 日韩欧美三级| 日本成本人片免费观看| 麻豆91在线看| 久草成色在线| 一区二区在线看| 欧美理伦片在线播放| 欧美成人女星排名| 亚洲精品影视| av在线三区| 国产三级精品视频| 国产专区精品| 欧美一区二区三区在线电影| 欧美日韩一区二区高清| 欧美日韩在线精品一区二区三区激情综| 国产美女精品一区二区三区| 免费在线中文字幕| 亚洲第一激情av| 久久国产小视频| 在线播放av网站| 99久久精品久久久久久清纯| 最新日韩一区| 欧美福利视频导航| 老司机久久99久久精品播放免费| av在线免费观看网址| 18成人在线观看| 午夜精品影视国产一区在线麻豆| 国产经典第一页| 国产99久久久国产精品| 亚洲精品aa| 天天操夜夜摸| 国产成人福利片| 欧美第一在线视频| 色成人亚洲网| 国产ts人妖一区二区| 婷婷激情成人| 99热在线免费观看| 91丝袜美腿高跟国产极品老师| 日本久久伊人| 黄页网站视频在线观看| 欧美激情在线一区二区| 亚洲自拍电影| 黑人与亚洲人色ⅹvideos| 亚洲少妇30p| 午夜视频一区| 妞干网免费在线视频| 日韩视频一区二区三区在线播放| 国产精品66部| 日韩三区视频| 欧洲不卡av|