日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

Energy Efficiency

Friday
29 Jan 2021

Leveraging the Power of AI to Make Solar Power Plants More Efficient

29 Jan 2021  by azocleantech.com   

Computer scientists and energy technology experts from Case Western Reserve University have joined hands to exploit the diagnostic power of artificial intelligence (AI) to improve the efficiency of solar power plants.

Solar power makes use of energy from the sun gathered by photovoltaic (PV) modules to produce clean, renewable energy. According to researchers, improving the efficiency of solar power plants will be beneficial for industry and, ultimately, consumers.

French is also the Director of the Solar Durability and Lifetime Extension Research Center at the Case School of Engineering.

Financially supported by a $750,000 grant for three years from the U.S. Department of Energy (DOE), the research forms part of a wider $130 million solar-technologies initiative launched by the DOE in 2020—which includes $7.3 million exclusively for machine-learning solutions and other AI for solar applications.

The project is co-led by French and Laura Bruckman, research associate professor in Materials Science and Engineering.

Machine Learning and Shared DataIn simple terms, the goal of the Case Western Reserve-led study is to use computers to analyze data from a huge number of neighboring PV systems in a better way to help measure their short- and long-term performance.

Those machine-learning methods will be employed to solve data-quality-related problems that impact the individual plants. To achieve this, the researchers will be using a “spatiotemporal graph neural network model.”

Spatiotemporal approach implies the identification of how plants perform differently in space (solar plants in the cold North versus the hot, dry South, for instance) and time (plants constructed 25 years ago using older technology versus those built newly), and the creation of a model to enhance all the individual PV plants in that group—and future systems.

However, it also relates to evaluating, comparing, and contrasting what has been brand-specific data, noted Bruckman.

“Different companies have information about their technology, in their area of the country,” added Bruckman, “but, until now, we haven’t had a chance to be able to gather and analyze all of the data from a wide range of companies and areas.”

Lastly, Yinghui Wu—researcher, team member, and an assistant professor in the Department of Computer and Data Sciences—added that the study will be useful not just to the solar industry, and eventually energy users, but also to AI researchers.

Wu is also a co-investigator on a National Science Foundation-funded project to enhance cybersecurity of large computer networks.

According to French, the group will work toward collecting and analyzing data this year, then start offering individual power plants and solar-energy companies a “pre-trained computer model” to evaluate how to enhance their own systems.

Background: the SETO 2020 ProgramThe goal of the Solar Energy Technologies Office Fiscal Year 2020 (SETO 2020) funding program is to promote projects that will “improve the affordability, reliability and value of solar technologies on the national grid and tackle emerging challenges in the solar industry.”

It financially supports projects varying from early-stage PV to solar thermal power, while reiterating the integration of various technologies and decreasing the costs related to the installation of solar energy systems.

Moreover, SETO motivates the project groups to forge collaborations with AI experts and industry representatives, like owners or operators of solar power plants, photovoltaic module manufacturers, electric utilities, and others.

The Case Western Reserve team, for instance, will collaborate with Canadian Solar, SunPower, Brookfield Renewable, C2 Energy Capital, and Sandia National Laboratories, apart from other partners.

More News

Loading……
天堂精品久久久久| 成人女同在线观看| 成全电影播放在线观看国语| 国产三级电影在线观看| 日本最新在线视频| 2021天堂中文幕一二区在线观| av日韩中文| 亚洲影视资源| 奇米亚洲欧美| 伊人青青综合网| 久久久噜噜噜| av不卡免费在线观看| 亚洲欧美一区二区久久| 日韩欧美在线中文字幕| 精品国产免费人成电影在线观看四季 | 国产理论片免费观看| 亚洲成人福利| 欧美卡一卡二| 国模大尺度视频一区二区| 欧美系列电影免费观看 | 男女av一区三区二区色多| 韩国三级中文字幕hd久久精品| 26uuu久久天堂性欧美| 亚洲成av人片在线观看| 精品精品欲导航| 九色在线视频| 成人黄色图片网站| 日韩精品看片| 黄色日韩网站视频| 亚洲另类在线一区| 日韩欧美高清dvd碟片| 加勒比一区二区三区在线| 伊人色综合一区二区三区影院视频| 动漫视频在线一区| 久久成人免费| 中文字幕一区二区三区在线不卡| 日韩视频免费观看高清完整版| 六十路在线观看| 亚洲狼人综合| 一区三区视频| 国产农村妇女精品| 91精品综合久久久久久| 日本美女在线中文版| 秋霞一区二区| 视频在线观看一区二区三区| 国产精品高潮呻吟久久| 日韩美女主播在线视频一区二区三区 | 日韩免费小视频| 狠狠操综合网| 高清不卡一区二区| 欧洲在线/亚洲| 成年午夜在线| 婷婷综合福利| 国产成人久久精品77777最新版本 国产成人鲁色资源国产91色综 | 蜜臀av一级做a爰片久久| 亚洲丝袜美腿综合| 日本a级黄色| 亚洲精品国产嫩草在线观看| 国精品一区二区| av中文字幕亚洲| 91麻豆精品国产无毒不卡在线观看 | www.91av| 久久国内精品| 亚洲一区欧美激情| 天天av天天翘天天综合网| 免费a在线观看| 色天下一区二区三区| 国产v日产∨综合v精品视频| 欧美影院一区二区三区| 亚洲男同gay网站| 综合日韩在线| 亚洲一区二区欧美日韩| chinese偷拍一区二区三区| 亚欧洲精品视频在线观看| 成人小视频免费在线观看| 日韩欧美一区在线| 经典三级一区二区| 日本在线播放一区二区三区| 欧美在线影院一区二区| 9999在线视频| 在线亚洲自拍| 欧美三级电影在线看| 在线看片国产福利你懂的| 久久午夜精品一区二区| 日本韩国精品在线| 无遮挡爽大片在线观看视频 | 日韩一区二区三区高清免费看看| 欧美成a人片在线观看久| 美女一区二区三区在线观看| 91精品国产高清一区二区三区蜜臀 | 懂色av一区二区在线播放| 丰满少妇又爽又紧又丰满69| 日韩三级网址| 久久精品欧美一区二区三区不卡| 在线观看av每日更新免费| 欧美色女视频| 亚洲一区二区三区国产| 丰满的护士2在线观看高清| 日韩av在线发布| 资源av在线| 日韩精品福利一区二区三区| 国产精品拍天天在线| 日本高清在线观看wwwww色| 一区二区三区成人精品| 日韩一级黄色片| 荡女精品导航| 亚洲精品成a人| 免费成人在线电影| 成人性生交大片免费看视频在线 | 真实国产乱子伦精品一区二区三区| 亚洲国产精品久久艾草纯爱| 深夜福利视频一区二区| 国产成人精品免费视频网站| 天堂av电影在线观看| 中文av一区| 欧美一卡在线观看| 亚洲精品aaaaa| 色欧美日韩亚洲| 视频一区日韩| 亚洲天堂精品视频| 精品欧美一区二区三区在线观看 | 国产欧美久久一区二区三区| 一二三四区精品视频| abab456成人免费网址| 国产午夜精品一区二区三区嫩草| 爆操欧美美女| 成人动漫一区二区| 天天综合视频在线观看| 国产呦萝稀缺另类资源| 国产午夜精品一区理论片| 美国毛片一区二区三区| 亚洲人成77777男人| 石原莉奈在线亚洲二区| 爱草在线视频| 午夜在线精品| 视频国产在线观看| 久久精品国产精品亚洲红杏| 国产一级片在线播放| 久久精品99国产国产精| 成年人在线观看| 成人福利视频网站| 天天综合av| 亚洲另类一区二区| 国产91精品入| 91精品免费观看| 亚洲最新色图| а√最新版地址在线天堂| 奇米综合一区二区三区精品视频| 国产专区在线| 91一区二区在线观看| 草草影院在线| 亚洲免费在线观看视频| 成人h动漫免费观看网站| 欧美色电影在线| 国产精品99视频| 91午夜在线| 国产精品一区免费视频| 国产乱码精品一区二三赶尸艳谈| 中文字幕一区二区三区色视频 | 国产精品美女久久久久久久久| 国产经典一区| 欧美亚洲图片小说| 午夜久久一区| 成人三级黄色免费网站| 久久久精品人体av艺术| 国产精品日韩精品在线播放| 欧美视频在线播放| 在线成人h网| 精品欧美色视频网站在线观看| 国产精品久久久久久久第一福利 | 久久亚洲精精品中文字幕早川悠里| 一级毛片久久久| 色噜噜偷拍精品综合在线| 亚洲最新色图| 免费日本一区二区三区视频| 国产午夜亚洲精品理论片色戒| 岛国成人av| 日本中文字幕高清视频| 波多野结衣在线一区| 久久久91麻豆精品国产一区| 精品免费视频.| 激情五月激情综合网| 素人一区二区三区| 欧美午夜精品久久久久久超碰| 9色国产精品| 女人让男人操自己视频在线观看| 一本色道a无线码一区v| 亚洲综合好骚| 黄瓜视频成人app免费| 日韩一区二区三区免费观看| 国产在线麻豆精品观看| 动漫一区二区三区| 国产一级大片| 国产精品免费丝袜| 99免费精品| 丁香影院在线| 欧美成人性战久久| 91免费精品国自产拍在线不卡| 国产一区三区在线播放| 毛片网站在线免费观看|