日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

Power Grid

Friday
30 Jul 2021

GERMANY TAKES THE LEAD IN HVDC

30 Jul 2021  by spectrum.ieee.org   

Stuttgart is one of the last places you’d expect to find in a power pinch. This south German city’s massive automotive plants run 24-7 without a hiccup, efficiency measures have held industrial power consumption flat, and solar panels flash from atop its major buildings. But now all that is at risk. The country’s accelerated shift from nuclear power and fossil fuels to renewable resources, such as wind and solar, has exposed a huge gap in its transmission capacity. If they are to survive, Stuttgart’s factories—and power consumers across southern Germany—will need to import a lot more power from the north, and Germany’s grid is already at capacity.?

To fill the gap, Germany is considering an aggressive plan that would push high-voltage direct current, or HVDC, from its conventional position on the periphery of AC grids to a central role. The primary reason is simple: For the first time, HVDC seems cheaper than patching up the AC grid. But Germany’s transmission planners also have another motivation: They want to provide as much performance and reliability as they can to an AC grid that’s already strained by excess wind power. For that, they’re considering implementing power electronics that are capable of doing something that’s never before been done on a commercial line: stop DC current in milliseconds flat. ?

As IEEE Spectrum went to press in early April, the €10 billion project was still being debated by the German parliament, but planning for the first HVDC line was already well under way. The project would start with the southern half of a 1000-megawatt, 660-kilometer line called Corridor A, to be strung from the North Sea port of Emden—a connection point for offshore wind farms under construction around Germany’s Borkum Island. It would end at an AC grid hub near the nuclear power station at Philippsburg, which lies 70 km northwest of Stuttgart. ?

If Germany moves forward with such HVDC lines, it could help pave the way for something much bigger, a “supergrid” of inter connected DC lines capable of transporting electricity on a continental scale, ferrying energy from North Sea turbines, dams in Scandinavia, or Mediterranean solar farms to wherever demand is greatest at that moment. The European Commission is counting on this sort of flexibility to meet its goal of an 80 percent renewable power supply by 2050. Corridor A could be the first step. ?

The idea for HVDC lines started to gain traction two years ago, when the Fukushima nuclear accident in Japan led German chancellor Angela Merkel to shut down 8 of her country’s 17 nuclear reactors and revive plans to phase out the rest of them by 2022. Although this will eliminate just 16 percent of the country’s annual electricity generation, the share comes to nearly half in the southern states of Bavaria and Baden-Württemberg, of which Stuttgart is the capital. Stuttgart will have to make up part of the loss by drawing on distant sources of wind power and fossil-fueled power plants. All told, some 10 gigawatts of power will need to be moved from northern to southern Germany once the last nuclear plant is closed. And the grid simply isn’t up to the challenge. ?

Renewable energy is already getting dumped because of it. In 2010, for example, German wind farms let some 127 gigawatt-hours of energy, enough to supply more than 30 000 German households for a year, fly on by. There was no grid capacity to deliver that power. The grid is so stressed that Bundesnetzagentur (BNetzA), Germany’s federal networks regulator, recently departed from typically dry language in its annual report [PDF] to warn that the accelerated shift from nuclear to renewables has “brought the transmission systems to the brink.” ?

Like many German cities, Stuttgart has a complex energy portfolio. The city generates one-eighth of its own electricity and gets most of the rest from elsewhere in Baden-Württemberg. Solar panels are the fastest-growing supplier in both the city and the state, thanks to premium prices set by the federal government. PV alone could account for as much as 18 percent of the energy produced in Baden-Württemberg by 2020.?

Little of that power will arrive in the winter, however, and none overnight. At the same time, solar generation is flattening peak power prices, undermining the profitability of natural gas and coal power plants. The Düsseldorf-based power company E.ON blamed the weakened market last November when it mothballed two natural-gas plants and shelved plans for a state-of-the-art coal plant; all happen to be in the south.?

Illustration: Bryan Christie Design. Source: www.entsoe.eu? Cutting Across the Grid: Germany’s transmission-system operators have proposed four HVDC lines (along three corridors) that would cut across the country’s AC grid and help ship power from the wind-rich north to the south, which is more reliant on nuclear energy. In 2011, Germany shut down eight of the country’s nuclear reactors [red dots]. The nine remaining reactors [blue dots] are slated to cease operating by 2022.

Using less coal and natural gas is a key plank in Germany’s response to climate change. But the pace of change is unsettling for BNetzA, which oversees the power grid and counts on fossil-fuel plants that deliver power on demand to maintain its stability. BNetzA is so concerned that for the past two winters it has paid owners of several older gas-fired power plants in southern Germany and Austria to keep their plants on standby.?

In principle, wind power in the south could take up some of the slack—but not much. Winds are generally slower in the south. Turbine construction to exploit what wind is available requires clearings and roads, and Germany’s celebrated Black Forest is defended tooth and nail by local communities. Expanding the south’s power storage capabilities with extra pumped storage has also met with resistance from environmental groups, which argue that building new hydropower reservoirs would destroy habitats.?

Add it all up and there appears to be no ready means of meeting the south’s needs other than bringing more power from the north. That would include a sizable amount of wind power, which already accounts for 8 percent of the country’s electricity consumption and is expected to nearly double by 2022. ?

Germany’s transmission system operators (TSOs), which operate the regional grids, have been eyeing major upgrades in the AC grid since 2005. That’s when the German Energy Agency published an analysis showing that variable renewable energy flows were already at risk of overloading the country’s grid. Whereas conventional power plants generated power close to where it was needed, the grid was increasingly moving renewable energy from wherever it was in surplus to whatever regions could use it. To add capacity, the agency called for a modest 5 percent expansion: 850 km of new ultrahigh-voltage AC lines, to be completed by 2015. ?

The plans didn’t stay modest. In 2010, the agency found that the country would need an additional 3600 km of new AC lines by 2020 to handle the growth in wind and solar power. That’s a daunting number given that stiff local opposition has stymied construction of all but 214 of the 850 km called for in 2005. The ballooning estimates are only partly due to the accelerating shift to renewable power. They are also exacerbated by the physics of AC grids. Germany’s grids, like most worldwide, are essentially single circuits, formed by a mesh of interconnected high-voltage lines. Electricity flows freely across the grid following a path of least resistance, one that shifts from moment to moment as power plants across the country (and Europe) ramp up and down and as millions of homes, businesses, and factories use appliances and machines. ?

Getting more power from point A to point B in an AC grid often requires building more than just one line to ensure that wandering power flows do not overload the grid’s weakest paths. Although some newer technologies can help nudge AC electricity down particular lines [see “Flexible AC Transmission: The FACTS Machine,” Spectrum, January 2011], they’re expensive to implement on large scales.?

North Wind: Turbine construction is on the rise off Germany’s North Sea coast. The Bard Offshore 1 wind farm will boast 80 turbines. One such turbine is shown here alongside an HVDC converter platform. PHOTO: BARD ENGINEERING

HVDC offers a comparatively elegant solution. Thanks to power electronics placed at either end, a single HVDC line can act as a high-capacity electrical wormhole, pulling electricity from close to its point of generation and reinjecting it into the AC grid hundreds or thousands of kilometers away. The direction and magnitude of the power transmitted on a line can be precisely controlled, something that’s impossible to do for an AC line within the grid’s wide-open circuit. The power electronics needed to make this happen can push the cost of a single HVDC line well above that of an AC line. But when Germany’s TSOs totaled up all the costs, they found that a DC system would be a less expensive way to enable the country’s shift toward renewables, primarily because fewer lines have to be built or upgraded. ?

One factor that has made HVDC particularly attractive is improvements to electronic converters—the units at either end of the line that transform AC current into DC current, and vice versa. Classic HVDC lines use converters built from thyristors, which are efficient but limited in their capabilities. Those converters rely on the AC system to support their operation. As a result, classic HVDC is typically chosen nowadays for long-haul lines moving loads of stable power, such as hydropower, that is relatively easy for the AC network to absorb. ?

In the late 1990s, Swiss-Swedish engineering giant ABB commercialized more sophisticated and compact converters, built from high-frequency silicon insulated-gate bipolar transistors (IGBTs). These “voltage source converters” (VSCs) control their own voltage and can thus help stabilize the AC grid around them. In an HVDC line using these advanced converters, hundreds of IGBTs connected in series fire synchronously to channel power from the AC line and rectify it into steady current for the DC line. The converter at the downstream end of the line performs a similar process to convert the current back into AC. At the same time these IGBT-based converters can watch for and correct voltage dips or surges on the AC lines. That has made them popular in applications such as linking offshore wind farms where shifting power levels require dynamic regulation of voltage at the AC connection point. ?

These capabilities ignited hope that HVDC could escape its niche status and challenge AC transmission for jobs at the heart of power grids. But the IGBT-based converters still had three hurdles to overcome before they could challenge AC technology. One was a capacity ceiling of a few hundred megawatts. Another was switching losses of about 1.5 to 2 percent of transmitted power per converter, which made them costly to use. For a line carrying power from a thousand offshore wind turbines, such converters would throw away the output of 15 to 20 of those multimillion-dollar machines. ?

IGBT Power: Existing IGBT-based HVDC units, like ABB’s HVDC Light system, shown above, cannot break DC current on their own. PHOTO: HALVOR MOLLAND/ABB

In 2010, Siemens commercialized a novel IGBT converter that cleared those two hurdles. These so-called modular multilevel converters gang together several hundred miniconverters, or “submodules,” to push the overall converter capacity from a few hundred megawatts to 1000 megawatts or more—the scale that Germany’s TSOs are looking for. Each submodule fires only when it’s needed to contribute to the conversion to or from a variable AC wave, cutting switching losses to just 1 percent per converter. ?

Rising power and efficiency have made the technology particularly attractive to Germany’s TSOs, which have pushed modular multilevel converters to the top of their list. But to get the performance and stability they want for Corridor A, they say they’ll need to overcome VSC technology’s ultimate Achilles’ heel: its inability to break DC current. ?

To avoid complex route planning and minimize opposition, the TSOs have sketched a route that would build the HVDC line down existing AC corridors, using the very same towers—a first for VSC-based lines. A long, exposed DC line is a large target for lightning, tree strikes, and other disruptions. Given the central role that Corridor A and three other planned DC lines will play in an already strained grid, the TSOs are hunting for an advanced HVDC converter that can tolerate or quickly recover from faults. ?

What’s needed is advanced HVDC equipment that’s capable of stopping the flow of high-voltage DC current so that a line can be quickly reset and rebooted. This isn’t a problem with AC lines—even ultrahigh-voltage ones—because the voltage zeroes out every time the current reverses direction: 100 times per second on Europe’s 50-hertz grids. Any one of those zero points is a natural spot to interrupt the circuit without creating a damaging arc. Direct current, however, just keeps pumping. Stopping it quickly and at high voltage is like slamming a gate in front of a speeding truck. “In DC, you always have full energy. If you tried to break a DC line with a mechanical breaker...it would just burn up the switchgear,” says Claes Rytoft, chief technical officer for ABB’s power systems division. ?

Today’s modular multilevel HVDC converters can’t help, because of a design quirk that actually feeds DC faults. Those converters are assembled from submodules that contain a pair of IGBTs, a pair of diodes, and a DC capacitor. The diodes are the problem component during DC faults. In normal operation, they dynamically reconfigure the submodule circuitry to handle the alternating positive and negative voltage coming from the AC grid. During a DC fault, however, current arcs over the diodes and connects the submodules’ positive and negative terminals, creating internal short-circuits. ?

Existing HVDC lines with IGBT-based converters get around their breaking problem by relying on the AC grid to shut the converters down. To clear a fault on a DC line, a speedy AC breaker upstream can cut off the current in less than 100 milliseconds. This sounds fast, but it’s only a small step toward restarting the line. The system must wait half a second to close the AC breaker after the fault is cleared, says ABB’s Rytoft, in order to reset the converters. And it can take up to 2 seconds for the converters to return to full power, he adds. While this works fine when HVDC lines are handling a few hundred megawatts, a line like Corridor A would shunt a tsunami of excess energy into the AC grid. And with the HVDC converter shut off, it could offer the AC grid no help in handling the disturbance.?

The most straightforward solution is to redesign the AC-DC converter submodules to function as breakers. One design fix that would work is already applied in some lower-power DC units: doubling the number of IGBTs to create a “full-bridge submodule.” The full-bridge’s two extra IGBTs give the circuit more flexibility, enabling it to repurpose its capacitor to fight a fault. In normal operation the capacitor acts primarily as a short-term energy buffer. But during faults on the DC line, the full-bridge’s extra switches can reconfigure the circuits so that the voltage across the capacitor, and thus the submodule, opposes the voltage on the DC line, resulting in zero current flow. In February, the French power equipment supplier Alstom demonstrated a converter incorporating full-bridge submodules that extinguished DC currents exceeding 3000 amperes in less than 2.5 milliseconds—up to 40 times as fast as an AC breaker. And the converter never turns off, so it can stabilize the AC grid and is ready to pump DC at full power once a fault is cleared. ?

But the penalty that comes with this speed boost may be substantial. Because full-bridge submodules use twice as many IGBTs as those in existing modular converters, they are less efficient, returning losses from each converter of as much as 1.7 percent. “It is a trade-off between losses and security of supply,” acknowledges Thomas Ahndorf, senior manager for system analysis at Stuttgart-based TransnetBW, the TSO for Germany’s southern grid.?

Ahndorf says he will pay the full-bridge’s efficiency penalty if he must, but he may not have to. HVDC innovators are racing to demonstrate smarter options. Alstom’s approach is to limit losses by substituting only some of the multilevel converter’s 2-IGBT submodules with full-bridge submodules. And in November, ABB demonstrated an entirely novel solution to efficient HVDC breaking: a stand-alone breaker that would sit on the HVDC line and be used along with the standard, two-IGBT converter. It couples a mechanical switch with two electronic breakers. In normal operation, electricity passes through the mechanical switch and the smaller of the two breakers. When the system detects a fault, the smaller breaker has just enough heft to start the breaking sequence, applying voltage to its IGBT gates to raise its resistance. That briefly shunts DC power through the larger breaker, which contains enough IGBTs to break the current. When the current switches over, the mechanical breaker is triggered, physically disconnecting the default path. Then the larger breaker cuts off the alternate path, squelching the DC current. According to ABB’s Rytoft, it’s all over in less than 5 milliseconds—much faster than the blink of an eye. And, says Rytoft, operating the larger current-stopping circuit solely during faults all but eliminates the efficiency penalty. ?

Power engineering heavyweight Siemens, meanwhile, is collaborating on a third option with Rainer Marquardt, chair for power electronics and controls at the University of Federal Defense, in Munich, and inventor of the modular multilevel converter. Marquardt’s scheme is to connect two of the submodules that he invented for Siemens’s VSC converters with a fifth IGBT. This “double submodule” can reorient capacitors to stop DC current, just as a full-bridge module does. But because only three of the five IGBTs are conducting current at any given moment, it loses one-third less power than a full-bridge converter. This solution might be considerably cheaper than ABB’s stand-alone breaker, as it can function as both a converter and a breaker. Marquardt estimates that installing a separate breaker such as ABB’s next to each converter on an HVDC line could increase its component costs by up to 50 percent, while his design could be comparable in cost and footprint to today’s VSC converters. ?

All of the HVDC innovators are poised to move fast. Alstom plans to test its design at higher current within months. Siemens has not revealed its plans for Marquardt’s design, but Marquardt says it won’t be hard to implement, because his new submodules are essentially a drop-in replacement for those Siemens already sells. And ABB is seeking a utility partner to test its system, which it plans to have ready for a first commercial application for 2017. ?

That might be just in time for Corridor A, which is already in the public consultation phase and is set to begin carrying power in 2017. TransnetBW’s Ahndorf says the corridor is on a “very tough schedule,” but keeping it is critical if all the grid extensions are to be constructed by 2022. “We have to learn. We have no time to lose,” he says.?

HVDC innovators are already looking ahead to what they see as the technology’s natural conclusion: HVDC grids that can optimize the flow of power between countries and across continents. “Most experts in this field have long said that it is very doubtful that this would be realistic,” Marquardt says. They have more confidence now, he says, since such supergrids are likely to need both advanced converters and stand-alone breakers, units that the German TSOs are helping to drive forward. ?

Supergrid backers say the need for HVDC grids, meanwhile, is already evident in the increasingly unmanageable cross-border flows on AC grids. The Czech Republic is installing phase-shifting transformers at its border with Germany, for example, to keep its neighbor’s renewable energy from looping through the Czech grid, which is at its carrying limit. Such rogue flows are a growing phenomenon across continental Europe, says Sébastien Lepy, head of grid development studies for RTE, France’s TSO, which is also eyeing more central HVDC lines.?

In principle, a European supergrid would make it easy to coordinate a range of far-flung sources of renewable energy, and it could be cheaper than revamping each country’s grid one by one. Large-scale grid schemes are already being seriously studied. A three-year project called E-Highway 2050, for example, is creating a modular scheme for linking up HVDC lines such as Corridor A to form a European supergrid. And the German Commission for Electrical, Electronic & Information Technologies is drafting technical standards for HVDC grids. ?

But some TSOs are skeptical that supergrids are urgently needed. “Point-to-point is a very good result. You don’t need a DC grid yet,” says Ahndorf, who is a member of the German electrotechnical commission’s HVDC grids working group. The benefits, he says, are still unclear. For now, German transmission planners like Ahndorf are just trying to get the first HVDC lines built. They’re keenly aware that the clock is ticking. The plan will need to be approved, financed, and then built, one line at a time. Years could slip away in negotiations with opponents of each line.?

And the stakes are high. Projections by the Berlin-based energy think tank Agora Energiewende suggest developers can bump up the generating capacity of renewable installations to 130 GW by 2022 from the roughly 75 GW in place at the close of last year. Without the ability to carry that power where it’s needed, that would be a hollow victory for the green energy movement. ?

This article originally appeared in print as “Germany Jump-starts the Supergrid?.”

About the Author

Paris-based contributing editor Peter Fairley traveled to Stuttgart last November to report on Germany’s bold HVDC plan. The weather was bitter cold and very dark, he says, which made it “chillingly clear” that the boom in solar power wouldn’t make up for the coming closure of the region’s nuclear plants—at least not year-round. “Fixing the grid will keep all of Germany on track,” he says.

More News

Loading……
女人抽搐喷水高潮国产精品| 成人福利在线| 写真片福利在线播放| 日本夜爽爽一二区| 中文在线а√天堂官网| 男人天堂网在线| 宅男网站在线免费观看| 综合日韩av| 亚洲一区二区三区四区电影| 99久久免费精品国产72精品九九| 婷婷综合成人| 欧美日韩亚洲国产精品| 久久伊人亚洲| av午夜一区麻豆| 亚洲乱码中文字幕| 欧美美女直播网站| 中文字幕校园春色| 欧美尤物美女在线| 欧美美女日韩| 欧美男男freegayvideosroom| 久久中文字幕二区| 日韩电影在线免费看| 99久久精品国产网站| 亚洲人成在线观看一区二区| 91福利在线观看| 国产国语**毛片高清视频| 国产51人人成人人人人爽色哟哟| 波多野结衣在线播放| 国产免费区一区二区三视频免费 | 99精品久久只有精品| 成人免费视频在线观看| 欧美日韩综合在线| 亚洲色图图片网| 国产精品av一区二区三区| 女一区二区三区| 久久精品首页| 国产精品久久看| 91精品国产高清一区二区三区 | 日本a级片免费| 午夜毛片在线| 超碰97久久国产精品牛牛| 亚洲免费精品| 亚洲国产精品传媒在线观看| 欧美日韩亚洲综合一区| 国产污视频在线| 国产精品777777在线播放| 欧美日韩网站| 国产精品女上位| 免费黄色av| av影院在线免费观看| 日韩高清欧美| 2024国产精品视频| 欧美一级爆毛片| 欧美性猛片xxxxx免费中国| 国产亚洲一区| 国产风韵犹存在线视精品| 色呦呦一区二区三区| 日本sm残虐另类| 99九九热只有国产精品| 99国产精品久久久| 欧美一区二区三区免费大片| av毛片在线免费看| 日韩国产专区| 国产欧美日韩一区二区三区在线观看| 欧美美女一区二区三区| 四虎影院观看视频在线观看| 成人免费在线播放| 97se亚洲国产综合在线| 日韩免费一区二区三区在线播放| 日韩激情av| 亚洲欧美综合| 亚洲综合色噜噜狠狠| 一级在线视频| 欧美理论电影在线精品| 99re成人在线| av日韩在线免费| 国语精品视频| 国产传媒一区在线| 成人综合网址| 日韩影片在线观看| 丁香桃色午夜亚洲一区二区三区| 日韩欧美综合在线| 日本午夜免费一区二区| 韩国一区二区在线观看| 欧美tickling网站挠脚心| 精品成人免费一区二区在线播放| 久久青草久久| 欧美老女人在线| 日韩不卡在线| 国产伦精品一区二区三区视频青涩 | 蜜臀av一级做a爰片久久| 欧美日韩国产影片| 亚州一区二区三区| 精品一区二区三区免费播放 | 国产呦萝稀缺另类资源| 日韩精品一区二区三区蜜臀 | 久久99国产乱子伦精品免费| 91精品欧美福利在线观看| 69堂免费精品视频在线播放| 国产精品综合视频| 97涩在线观看视频| 香蕉久久夜色精品国产使用方法 | 上原亚衣加勒比在线播放| 国产日韩欧美中文在线| 久久久精品国产免大香伊| 欧美精品a∨在线观看不卡| 欧美a级片网站| 日韩影视高清在线观看| 欧美激情日韩| 欧美日韩一区三区| 高清一区二区三区av| 91色在线porny| 免费动漫网站在线观看| 欧美性色综合| 精品女同一区二区| 久久91成人| 色av一区二区| 色综合久久久| 中文字幕在线观看不卡视频| 国内精品不卡| 国产老肥熟一区二区三区| 玖玖在线免费视频| 欧美日韩亚洲一区在线观看| 欧美猛男gaygay网站| 日韩a级大片| 欧美日韩中文在线观看| 国产精品一区二区三区av| 国产精品久久久久精k8| wwww在线观看免费视频| 不卡一区二区中文字幕| 免费观看在线午夜影视| 国产一区在线观看视频| 可以在线观看的av网站| 日韩一区欧美二区| 在线观看国产麻豆| 久久久综合网| 欧美孕妇孕交xxⅹ孕妇交| 蜜乳av另类精品一区二区| 中文字幕一区二区三区域| 国产亚洲一级| 羞羞视频在线观看| 爽好久久久欧美精品| 亚洲精品视频在线免费| 久久精品国产99久久6| 欧美欧美欧美| 精彩视频一区二区| 麻豆视频在线观看免费网站| 国产成a人亚洲精品| av网址在线免费观看| 91麻豆精东视频| 高潮一区二区| 亚洲成人自拍偷拍| 加勒比中文字幕精品| 欧美日韩国产色站一区二区三区| 精品久久国产| 成人网18免费网站在线| 亚洲主播在线| 99re在线视频| 国产日韩视频一区二区三区| 精品欧美日韩精品| 欧美性猛交xxxxx免费看| 精品国产一区一区二区三亚瑟| 欧美xxxxxxxxx| 亚洲视频久久| 国产69精品久久app免费版| 91在线免费播放| 成人av在线播放| 欧美巨大另类极品videosbest | 成人晚上爱看视频| 三上悠亚激情av一区二区三区| 一区二区三区成人| 欧洲乱码伦视频免费| 国产女王在线**视频| 成人精品视频网站| а√天堂资源国产精品| 在线日韩一区二区| 一区在线免费| 在线免费观看的av| 亚洲综合色视频| 日韩欧美视频专区| 每日更新av在线播放| 欧美国产日韩a欧美在线观看| 亚洲一区二区三区在线免费 | 精品日韩一区二区| 日本美女视频一区二区| 97在线超碰| 欧美偷拍一区二区| 免费在线欧美黄色| 丝袜老师在线| 欧美人成免费网站| 国内外成人在线| 成人污污www网站免费丝瓜| 日韩一级视频免费观看在线| 免费观看久久久4p| av亚洲一区| 99re6在线视频| 99riav一区二区三区| 久久夜色精品国产噜噜av小说| 欧美著名女优| 亚洲精品福利视频网站|