日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

Hydrogen

Tuesday
31 Dec 2024

AI Replaces Humans in Identifying Causes of Fuel Cell Malfunctions

31 Dec 2024   

Dr. Chi-Young Jung's research team from the Hydrogen Research & Demonstration Center at the Korea Institute of Energy Research (KIER) has successfully developed a method to analyze the microstructure of carbon fiber paper, a key material in hydrogen fuel cells, at a speed 100 times faster than existing methods. This was achieved by utilizing digital twin technology and artificial intelligence (AI) learning.

Carbon fiber paper is a key material in hydrogen fuel cell stacks, playing a crucial role in facilitating water discharge and fuel supply. It is composed of materials such as carbon fibers, binders (adhesives), and coatings. Over time, the arrangement, structure, and coating condition of these materials change, leading to a decline in the performance of the fuel cell. For this reason, analyzing the microstructure of carbon fiber paper has become an essential step in diagnosing the condition of fuel cells.

However, real-time analysis of the high-resolution microstructure of carbon fiber paper has been impossible until now. This is because obtaining accurate analysis results requires a process in which the carbon fiber paper sample is damaged and then subjected to detailed examination using an electron microscope.

To address the limitations of existing analysis methods, the research team developed a technology that analyzes the microstructure of carbon fiber paper using X-ray diagnostics and an AI-based image learning model. Notably, this technology enables precise analysis using only X-ray tomography, eliminating the need for an electron microscope. As a result, it allows for near real-time condition diagnosis.

The research team extracted 5,000 images from over 200 samples of carbon fiber paper and trained a machine learning algorithm with this data. As a result, the trained model was able to predict the 3D distribution and arrangement of the key components of carbon fiber paper — including carbon fibers, binders, and coatings — with an accuracy of over 98%. This capability enables the comparison of the initial state of the carbon fiber paper with its current state, allowing for the immediate identification of performance degradation causes.

The conventional analysis method, which involves crushing carbon fiber paper samples and using an electron microscope, takes at least 2 hours to complete. In contrast, the analysis model developed by the research team can identify the degradation, damaged areas, and extent of damage in the carbon fiber paper within a few seconds using only X-ray tomography equipment.

In addition, the research team utilized data from the developed model to systematically identify how design factors such as the thickness of the carbon fiber paper and the binder content affect fuel cell performance. They also extracted optimal design parameters and proposed an ideal design plan aimed at improving the efficiency of fuel cells.

Dr. Chi-Young Jung, the lead researcher, stated, "This study is significant in that it enhances analysis technology by combining AI with virtual space utilization, and clearly identifies the relationship between the structure and properties of energy materials, thereby demonstrating its practical applicability." He added, "We expect it to play a significant role in related fields such as secondary batteries and water electrolysis in the future.“

This study was conducted with the support of the Korea Institute of Energy Research's (KIER) research program and was published online in October 2024 in Applied Energy, a globally renowned journal in the energy sector.

More News

Loading……
26uuu色噜噜精品一区| 久久99精品国产| 2020国产在线| 精品国免费一区二区三区| 中文子幕无线码一区tr| 视频精品一区二区| 日韩免费久久| 在线成人免费| 男女在线观看视频| 四虎影视在线播放| 精品日韩欧美在线| 岛国av在线不卡| 国产日产精品1区| 国产一区二区三区美女| 欧美片第1页综合| 久操精品在线| 亚洲网一区二区三区| 国产在线观看www| av影片在线看| 国产超碰在线观看| 精品日韩成人av| 黄色成人在线免费| 国产精品不卡在线| 91亚洲国产成人精品一区二区三| 亚洲一区日韩| 亚洲高清av| 伊人久久大香线蕉综合四虎小说| 国产精品香蕉| 亚洲国产综合在线观看| 人在线成免费视频| 国产网站在线免费观看| 麻豆app在线观看| 欧美aaa大片| 精品sm捆绑视频| 欧洲国内综合视频| 精品久久久久久中文字幕| 国产精品久久久久三级| 久久亚洲春色中文字幕久久久| 黄页网站大全一区二区| 亚洲在线观看| 亚洲乱亚洲高清| 在线精品视频在线观看高清| 精品一区av| 日韩电影二区| 美女久久久久| 欧美日韩亚洲在线观看| 欧美日韩有码| 2023国产精品久久久精品双| 大胆日韩av| 91精品久久久久久久蜜月| 9999国产精品| 欧美日韩午夜| 国产一区二区三区四区三区四| 99久久久久| 国产精品国码视频| 国产日韩欧美三区| 麻豆成人免费电影| 夫妻av一区二区| 91捆绑美女网站| 国产精品无人区| 一区二区欧美国产| 午夜精品福利一区二区蜜股av | 麻豆网站免费在线观看| 高清电影在线免费观看| 成人日韩在线观看| 伊人久久亚洲| 成人羞羞网站入口免费| 亚洲视频一二| 国产一区二区在线观看免费| 久久久噜噜噜久久中文字幕色伊伊| 国产欧美一区二区三区在线看蜜臀 | 50度灰在线| 欧美电影免费看| 91蝌蚪精品视频| 日韩午夜电影网| 久久99伊人| 99久久精品国产一区二区三区| 国产精品久久久久9999吃药| 岛国av一区二区| 在线观看成人网| 成人在线免费视频| 爱啪视频在线观看视频免费| 青草伊人久久| 一本精品一区二区三区| 蜜臀av一区二区| 日本一区二区三区四区| 精品色蜜蜜精品视频在线观看| 日韩一区二区三区四区| 中文在线а√天堂官网| 韩国日本一区| 香港久久久电影| 欧美日本中文| 丁香婷婷综合五月| 亚洲丰满少妇videoshd| 三上悠亚在线资源| 四虎久久免费| 91久久偷偷做嫩草影院电| 综合一区av| 性感少妇一区| 国产精品国产三级国产普通话99 | 成人免费毛片a| 亚洲无线码一区二区三区| 欧美va天堂va视频va在线| 成年人在线观看网站| 香蕉久久久久久| 欧美日韩国产高清| 91一区二区在线| 欧美日韩在线播| 色播色播色播色播色播在线| 国产成人午夜性a一级毛片| 97欧美在线视频| 波多野结衣中文字幕一区二区三区 | 欧美一区在线视频| 嫩草香蕉在线91一二三区| 国产精品免费精品自在线观看 | 爱情岛亚洲播放路线| 狠狠操综合网| 国产91色综合久久免费分享| 国产真实乱对白精彩久久| 99久久伊人精品| 欧美日韩国产免费一区二区| 中文字幕在线播放| 香蕉视频一区二区三区| 国产精品 欧美精品| 91国偷自产一区二区使用方法| 黑人与亚洲人色ⅹvideos| 黄色欧美网站| 国产美女主播视频一区| 欧美午夜视频网站| 在线观看电影av| 天天做天天爱天天综合网| 久久久国产综合精品女国产盗摄| 91精品国产一区二区三区蜜臀| 在线观看的网站你懂的| 国产精品黑丝在线播放| 国产精品理论在线观看| 伊人发布在线| 成人在线超碰| 99国产精品视频免费观看| 日日操天天摸| 国产一区二区三区四区五区3d| 一本色道88久久加勒比精品| 一区二区三区国产精品| 国外av在线| 成人羞羞网站入口| 国产日韩综合av| 一线天粉嫩在线播放| 国产suv精品一区| 国产 欧美在线| 九色丨porny丨| 国产福利一区二区精品秒拍| 成人教育av在线| 嫩草影院网站在线| 99久久免费精品国产72精品九九| 成人免费精品视频| 啊灬啊灬啊灬啊灬高潮在线看| av动漫精品一区二区| 99国产精品久久久| 伊人色综合网| 一精品久久久| 色婷婷av久久久久久久| sese综合| 成人黄色大片在线观看 | 水蜜桃精品av一区二区| 中文字幕一区二区三区四区| 尤物网在线观看| 亚洲免费大片| 日韩久久久精品| 精品中国亚洲| 亚洲免费在线电影| 视频在线这里都是精品| 蜜桃精品视频在线观看| 性直播在线观看| 国产99亚洲| 欧美色道久久88综合亚洲精品| 神马久久午夜| www.欧美精品一二区| 中文字幕免费在线观看| 欧美精品三级| 日韩一区二区精品葵司在线| 高潮按摩久久久久久av免费| 亚洲色图丝袜美腿| 色资源二区在线视频| 国产成人免费网站| 国产69精品久久app免费版| 国产精品入口| 国产网红在线| 欧美日韩在线大尺度| 精品国产91亚洲一区二区三区婷婷| 图片婷婷一区| 色丁香久综合在线久综合在线观看| 国产精品麻豆成人av电影艾秋| 久久久久久免费网| 成年人国产在线观看| a级精品国产片在线观看| 日本欧美在线视频免费观看| 精品综合免费视频观看| 国产69精品久久app免费版| 寂寞少妇一区二区三区| av播放在线观看|