日韩福利电影在线_久久精品视频一区二区_亚洲视频资源_欧美日韩在线中文字幕_337p亚洲精品色噜噜狠狠_国产专区综合网_91欧美极品_国产二区在线播放_色欧美日韩亚洲_日本伊人午夜精品

Search

Hydrogen

Wednesday
13 May 2020

Kobe Team Develops Method for Highly Efficient Hydrogen Production

13 May 2020  by greencarcongress.com   

A research group led by Associate Professor Takashi Tachikawa of Kobe University’s Molecular Photoscience Research Center has developed a strategy that greatly increases the amount of hydrogen produced from sunlight and water using hematite (α‐Fe2O3) photocatalysts.

They were able to raise the conversion rate up to 42% of its theoretical limit (16%) by synthesizing tiny nanoparticle subunits in the hematite. A paper on their work appears in the journal Angewandte Chemie International Edition.

Mesocrystal photoanode formation and photochemical water splitting characteristics. a. Electron microscope image of a hematite mesocrystal (assembled from tiny nano-particles of approx. 5nm). b. Gas production from the anode. c. Graph to show the current density and applied voltage. The anode is the photocatalyst anode, and a platinum electrode was used for the cathode. The potential is based on the RHE (Reversible Hydrogen Electrode). The oxidation potential is 1.23V. The solar water splitting capacity was greatly enhanced by making the nano-particles in the mesocrystal structures smaller. Zhang et al.

Hematite is a type of iron oxide ore. In addition to being safe, inexpensive and stable (pH > 3), Hematite can absorb a wide range of visible light (approx. under 600nm). The theoretical limit of its solar energy conversation efficiency is 16% (a photocurrent density of 13 mA cm-2).

Tachikawa and his colleagues successfully produced a photoanode with an extremely high conductivity by annealing hematite mesocrystals (superstructures consisting of tiny nanoparticles of approx. 5nm) to a transparent electrode substrate.

Numerous oxygen vacancies were formed inside the hematite mesocrystals by accumulating and sintering tiny highly-orientated nanoparticles of less than 10 nanometers.

Inside the mesocrystal structure, there are spaces where there is no oxygen—i.e., oxygen vacancies (Vo). In hematite, the creation of these oxygen vacancies enhances electrical conductivity because Fe3+ is deoxygenated, becoming Fe2+ (the oxygen molecules move to fill the vacancies). The presence of oxygen vacancies improved the conductivity of the photocatalyst electrode, at the same time giving it a significant surface potential gradient, thereby promoting the separation of electrons and holes.

At the same time a large amount of holes moved to the surface of the particles, allowing a high rate of oxygen evolution from water. The accumulation of holes improved the efficiency of the water oxidation reaction; the slow oxidation of the water has previously been a bottleneck in water-splitting. This enabled the researchers to achieve the world’s highest solar water-splitting performance for hematite anodes.

This strategy can be applied to a wide range of photocatalysts, beginning with solar water-splitting.

In addition to boosting the high efficiency of what is thought to be the world’s highest performing photoanode, this strategy will also be applied to artificial photosynthesis and solar water-splitting technologies via collaborations between the university and industries.

Previously, Tachikawa and his colleagues developed mesocrystal technology, which involves precisely aligning nanoparticles in photocatalysts to control the flow of electrons and their holes.

They produced the mesocrystal photoanodes by coating a transparent electrode substrate with hematite mesocrystals containing titanium and then annealing them at 700 ºC. A co-catalyst was deposited on the surface of the mesocrystals. When the photocatalysts were placed in an alkaline solution and illuminated with artificial sunlight, the water-splitting reaction took place at a photocurrent density of 5.5 mA cm-2 under an applied voltage of 1.23V.

The key to achieving a high conversion rate is the size of the nanoparticles that make up the mesocrystal structure. It is possible to greatly increase the amount of oxygen vacancies that form during the sintering process by making the nanoparticles as small as 5 nm and increasing the connecting interfaces between the nanoparticles. This boosted the electron density, and significantly increased the conductivity of the mesocrystals.

Next, the researchers will collaborate with industries to optimize the hematite mesocrystal photoanodes and implement an industrial system for producing hydrogen from solar light. At the same time, the strategy developed by this study will be applied to various reactions, including artificial photosynthesis.

More News

Loading……
精品国产91亚洲一区二区三区婷婷| 成人精品一区二区三区四区| 美女被久久久| 日本女优在线视频一区二区| 免费黄网站欧美| 国产一区在线视频| www.亚洲色图.com| 国产精品国产三级国产普通话三级| 国产精品久久福利| 都市激情亚洲色图| 欧美日韩一区二区在线观看视频| 欧美在线色视频| 中文字幕免费中文| 中文字幕av在线播放| 亚乱亚乱亚洲乱妇| 性欧美freehd18| 青青一区二区| 欧美日本不卡高清| 欧美a一区二区| 久久夜色精品国产欧美乱极品| 亚洲情趣在线观看| 欧美区在线观看| 超碰在线一区二区三区| 天天在线视频色| 欧美福利在线播放| 国产精品一区2区3区| 国产美女一区| 97se亚洲国产综合自在线| 亚洲激情av在线| 日韩视频免费观看高清完整版| 情se视频网在线观看| 深夜国产在线播放| 91综合久久爱com| 影音先锋久久资源网| 成人动漫在线一区| 精品国产福利视频| 国产一二区视频| 2021中文字幕在线| 国内精品久久久久久久影视简单| 日本午夜精品视频在线观看| 中文无字幕一区二区三区| 3atv一区二区三区| 99se视频在线观看| 深夜福利一区| 久久精品午夜| 亚洲免费av在线| 免费的很黄很污的视频网站| av福利导福航大全在线| 精品国产精品久久一区免费式| 日韩国产欧美一区二区三区| 亚洲黄色免费网站| 狠狠干夜夜操| 日韩精品99| 亚洲青色在线| 国产精品福利一区二区| 国产黄视频网站| 中文字幕人成乱码在线观看| 亚洲综合专区| 国产喂奶挤奶一区二区三区| 日韩欧美www| 久久影院午夜精品| 自拍日韩欧美| 国产精品传媒在线| 国外亚洲成av人片在线观看| 户外露出一区二区三区| 国产精品久久久久毛片大屁完整版| 国产精品视频免费看| 天天看天天干| 韩国三级一区| 日日夜夜精品免费视频| 色综合久久久网| a天堂中文在线88| 精品一区二区三区中文字幕 | 一级毛片视频| 白嫩亚洲一区二区三区| 美女视频黄 久久| 色综合天天视频在线观看| 亚洲乱亚洲乱妇| 亚洲在线久久| 午夜激情一区二区三区| freemovies性欧美| 91精品一区二区三区综合| 1024精品合集| 国家队第一季免费高清在线观看| 欧美在线关看| av不卡在线播放| 黄色毛片av| 中文一区二区三区四区| av电影天堂一区二区在线| 99在线免费视频| 麻豆国产精品| 2020国产精品自拍| 玖玖在线免费视频| 一个色免费成人影院| 欧美国产日本韩| 欧美高清电影在线| 天天综合一区| 天天av天天翘天天综合网色鬼国产| 麻豆最新免费在线视频| 亚洲精品一级| 欧美日韩国产成人在线91| 成人免费黄色| 91色porny蝌蚪| 天堂资源中文在线| 91综合网人人| 91久久精品一区二区| 国产精品蜜芽在线观看| 七七婷婷婷婷精品国产| av大片免费看| 久久99精品久久久久久园产越南| 亚洲精选免费视频| 成人免费一区二区三区牛牛| 青青草国产精品亚洲专区无| 成人在色线视频在线观看免费大全| 国产精品xxx在线观看| 亚洲日本在线视频观看| av丝袜在线| 99久久精品免费看国产 | 欧美日本不卡| 欧美一区中文字幕| 麻豆一区一区三区四区| 亚洲国产日产av| 国产美女久久| 国产精品久久久久久户外露出| av片哪里在线观看| 国产成人在线视频免费播放| 男人av在线| 久久一区亚洲| 国模私拍视频| 亚洲国产91| 秋霞福利视频| 亚洲欧洲日本一区二区三区| 狠狠操夜夜操| 一区二区三区高清视频在线观看| 97秋霞电影网| 99精品福利视频| bdsm精品捆绑chinese| 亚洲激情婷婷| 神马久久影视大全| 欧美日本三区| 天堂在线看视频| 香蕉精品999视频一区二区| 成人福利视频导航| 日本欧美一区二区三区| 蜜桃视频在线免费| 国产精品一区久久久久| www在线视频| 成人午夜激情片| 丰满的护士2在线观看高清| 久久精品一二三| 91亚洲视频| 欧美日韩国产综合新一区 | 亚洲视频免费在线观看| 激情小说亚洲| 欧美午夜电影在线| 国产午夜一区| 国产jizz| 狠狠色综合色综合网络| 日韩免费影院| 一区二区三区在线观看国产| 国产另类在线| 日韩欧美中文字幕一区| 亚洲大胆视频| a视频网址在线观看| 国产亚洲成aⅴ人片在线观看| 久久天堂影院| 欧美日韩成人在线一区| 亚洲电影成人| 国产视频三级在线观看播放| 成人午夜激情影院| 91精品网站在线观看| 欧美日韩国产片| 国产精品久久久免费| 中文字幕在线三区| 亚洲激情在线播放| 日韩成人精品一区| 在线观看中文字幕| 久久青草欧美一区二区三区| 国产电影一区| 悠悠资源av网址| 国产精品自拍一区| 国产精品成人国产| 91超碰这里只有精品国产| 久久国产精品毛片| 欧美三级网站| 欧美精品xxxxbbbb| 久久成人免费日本黄色| 成人美女黄网站| 欧美精品v日韩精品v韩国精品v| 免费看的黄色欧美网站| 黄色影院在线看| 色偷偷久久一区二区三区| 99在线精品视频在线观看| 草莓视频丝瓜在线观看丝瓜18| 亚洲va在线va天堂| 99亚洲一区二区| 国产精品av一区二区三区| 欧美一区二区成人| 成人免费电影视频| 免费一区二区三区视频导航|